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A series of tricyclic tetraamides have been synthesized and were characterized from spectral and XRD
studies. XRD studies revealed that the pyridine-based tricyclic cyclophane amide exists with twisted phe-
nyl rings. All the cyclophane compounds form charge-transfer (CT) complexes with TCNQ. Metal ion com-
plexation studies show that the cyclophane amides are more selective towards Cu(II) ions rather than
Ni(II) and Cd(II) ions.

� 2010 Elsevier Ltd. All rights reserved.
The enhanced applications of aza crown ethers in supramolecu-
lar chemistry1–5 have influenced the synthetic chemist to modify
the molecular structure. The most important aspect of supramolec-
ular chemistry is the host–guest complexation process. Hence the
basic crown ether structures were modified significantly to in-
crease the selectivity and specificity of guest molecules for com-
plexation. One of the key modifications is the replacement of
oxygen donor atoms by sulfur and/or by nitrogen atoms.6 The
other significant modification is the insertion of functional groups,
viz., amides and esters in the macrocyclic ring system.7–10 Synthe-
sis of amide-based supramolecular systems have been reported in
the literature.11–15 Neutral macrocyclic amides display anion-bind-
ing properties.16 In fact peptides exhibit molecular shuttling
through anion recognition.17 Interactions between electron donors
and complementary electron acceptor groups in cyclophanes can
form intramolecular charge-transfer (CT) complexes and can exhi-
bit self complementary properties in addition to p–p interac-
tions.18–20 Furthermore such cyclic amides can form complexes
with metal ions like Cd(II),21 Fe(III)22 and Cu(II)23 and hence they
can be used for selective metal ion complexation. Hence it is of
interest to synthesize and study the CT, metal complexation prop-
erties of novel cyclophane amides. Herein, we report the synthesis
of tricyclic cyclophane amides 1 and 2, cyclophane sulfonamide 3
and monocyclic cyclophane amides 4 and 5 along with charge
transfer complex studies with TCNQ and also metal complexation
studies with Cu(II), Ni(II) and Cd(II) ions.
ll rights reserved.
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Five different cyclophane amide derivatives 1–5 shown in
Figure 1 were synthesized from m-xylylenediamine (Schemes 1
and 2). Reaction of 1 equiv of m-xylylenediamine 6 and 1 equiv of
isophthalaldehyde 7 in ethanol under high-dilution conditions24

at room temperature resulted in the formation of cyclophane tetrai-
mine 8 in 95% yield. The product was slowly precipitated from the
reaction mixture during the course of the reaction and used without
further purification. Reduction of cyclophane imine 8 with sodium
borohydride in toluene–THF–MeOH mixture at 0–5 �C afforded sec-
ondary tetraamine cyclophane 9 in about 80% yield25 and the prod-
uct was purified from cold acetonitrile (Scheme 1). The tetraamine
cyclophane 9 was recrystallized from chloroform. The structure of
tetraamine cyclophane 9 was confirmed from the spectroscopic
and XRD data. The 1H NMR spectrum of tetraamine cyclophane 9
displayed the N-methylene protons as a singlet at d 3.79. The rest
of the aromatic protons appeared in the region ranging from d
7.20–7.29. In the 13C NMR spectrum of 9, the N-methylene carbons
appeared at d 53.8. The structure of 9 was also confirmed by XRD.
The crystal parameters for cyclophane amine 9 are given in Table
1 and ORTEP diagram is shown in Figure 2.

In order to test the synthetic utility of secondary tetraamine
cyclophane 9 for the synthesis of tricyclic amide, 1.0 equiv of cyclo-
phane amine 9 was coupled with 2.0 equiv of isophthaloyl chloride
10, pyridine-2,6-dicarboxylic acid chloride 11, benzene-1,3-dis-
ulfonyl chloride 12 in the presence of triethylamine in dry DCM
at room temperature under high dilution conditions.26 The reac-
tion afforded the tricyclic cyclophane amides 1,27 228 and 329 in
65%, 70% and 75% yields, respectively, after purification by column
chromatography (Scheme 1). The amide 2 was recrystallized from
chloroform/acetonitrile mixture. The structure of cyclophane
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Figure 1. Structures of cyclophane amides 1–5.
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amides 1–3 was confirmed from the spectroscopic and XRD data.
The 1H NMR spectrum of cyclophane amide 2 displayed four sets
of doublets for the N-methylene protons at d 3.80, d 5.00, d 5.10
and d 5.41. The rest of the aromatic protons appeared between d
6.95 and 7.94. In the 13C NMR spectrum of cyclophane amide 2,
the N-methylene carbons appeared at d 50.8 and d 55.0 and car-
bonyl carbon at d 169.2. FT-IR spectrum shows the carbonyl
stretching frequency at 1631 cm�1 for the cyclophane amide 2.
XRD analysis of compound 2 shows that out of four benzene rings,
two of them are parallel to each other. Moreover, the pyridine moi-
eties are parallel to each other. XRD studies indicate that intermo-
lecular hydrogen bonding exists between cyclophane amide 2 and
water. The crystal parameters for cyclophane amide 2 are given in
Table 2 and ORTEP diagram is shown in Figure 3.

However, the reaction between m-xylylenediamine 6 and
isophthaloyl chloride 10, pyridine-2,6-dicarboxylic acid chloride
11 in the presence of triethylamine in dry DCM at room tempera-
ture under high dilution conditions30 afforded the cyclophane
amides, 431 and 532 each in about 80% yield (Scheme 2). The 1H
NMR spectrum of cyclophane amide 4 displayed the N-methylene
protons as a doublet at d 4.44 and NH protons as a triplet at d 9.08.
The rest of the aromatic protons appeared in the region ranging
from d 7.19–8.38. In the 13C NMR spectrum of 4, the N-methylene
carbons appeared at d 42.69 and the carbonyl carbon at d 165.3 and
d 165.8. FT-IR spectrum shows the carbonyl stretching frequency at
1638 cm�1 for compound 4. The structure of the cyclophane amide
4 has been confirmed from the spectral data. Similarly the struc-
ture of the cyclophane amide 5 was also confirmed from spectral
and analytical data.

Cyclophane amides 1, 2, 3, 4 and 5 exhibited charge transfer
complexes with TCNQ.33 Complexation studies of compounds 1,
2, 3, 4 and 5 with TCNE and PQT were not successful. Cyclophanes
1, 2, 3, 4 and 5 show UV–Vis absorption maxima at 225.5, 261.0,
262.0, 255.0 and 258.0 nm, respectively. However, the acceptor
TCNQ shows an absorption maximum at 395.0 nm. Cyclophanes
1, 2, 3, 4 and 5 form a charge transfer complex with TCNQ as evi-
denced by the appearance of absorption maxima at 843.5, 842.0,
842.5, 843.0 and 842.5 nm, respectively. (Table 3, Figs. 4 and 5)
The plot of (concentration of cyclophane)/absorbance (Y/A) versus
1/concentration of guest (1/X) was linear. Benesi–Hildebrand
equation was employed to calculate Ka values.34 From the slope
and the intercept values, Ka (Ka = intercept � slope�1) and e (e
= intercept�1) were evaluated. The plot was linear suggesting that
the predominate species in solution as a 1:1 complex (Fig. 6). Nhe
Ka, e and r values of the CT complexes formed from 1, 2, 3, 4 and 5
with TCNQ are shown in Tables 4 and 5.

Complexation studies were carried out with cyclophane amides,
1, 2, 3, 4 and 5 with Cu(II) acetate in a mixture of CHCl3 and etha-
nol.35 The complex formation was studied using an absorption
spectrophotometer by following the maximum absorption of the
ligands. Further studies show that the shift of the maximum
absorption towards the higher wavelength was observed with
Cu(II) complexes (Table 6). However, the complexation studies
with Ni(II) acetate and Cd(II) acetate did not show any shift in
the maximum absorption of the ligand band. Thus the cyclophane
amides 1, 2, 3, 4 and 5 are more selective towards the Cu(II) rather
than Ni(II) or Cd(II) ions. This selectivity is due to the cavity size
(0.73–0.85 Å) which matches with the size of Cu(II) ion (0.73 Å)
rather than Ni(II) (0.69 Å) and Cd(II) (0.95 Å) ions. Thus cyclophane
amides 1, 2, 3, 4 and 5 form complexes with Cu(II) rather than
Ni(II) and Cd(II) ions. Further the presence of Ni(II) ions or Cd(II)
ions did not interfere with the formation of a complex by the
receptor molecules with Cu(II).

In summary we have synthesized various cyclophane amides
which show strong CT interactions selectively with TCNQ rather
than TCNE and PQT. Complexation studies of all the five cyclo-
phane amides show that they are more selective towards the Cu(II)
rather than Ni(II) and Cd(II) ions. The biological activity and de-
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Scheme 1. Reagents and conditions: (i) isophthalaldehyde 7, ethanol, rt, 48 h, 8 (95%); (ii) NaBH4, toluene–THF–MeOH, 0–5 �C, 1 h, 9 (80%); (iii) isophthaloyl chloride 10, TEA,
DCM, rt, 24 h, 1 (65%); (iv) pyridine-2,6-dicarboxylic acid chloride 11, TEA, DCM, rt, 24 h, 2 (70%) and (v) benzene-1,3-disulfonylchloride 12, TEA, DCM, rt, 24 h, 3 (75%).
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Figure 2. ORTEP diagram of cyclophane tetraamine 9.

Figure 3. ORTEP diagram of cyclophane amide 2.
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Figure 6. Plot between 1/X and Y/A for cyclophane amide 2.

Table 4
Benesi–Hildebrand treatment data of the CT complex formed between the cyclophane
amide, 1 and TCNQ

Concd of guest, [X] (M) Absorbance (Å) [Y]/A(M) 1/[X] (M�1)

4.9 � 10�6 0.066 0.0003540 204,081
9.8 � 10�6 0.113 0.0002080 102,040
14.7 � 10�6 0.155 0.0001506 68,027
19.6 � 10�6 0.171 0.0001360 51,020
24.5 � 10�6 0.202 0.0001160 40,816
29.4 � 10�6 0.230 0.0001018 34,013

kmax = 843.5 nm; concentration of cyclophane amide, 1 = 2.34 � 10�5 M.
Ka = 3.79 � 104 M�1; e = 1.80 � 104 [M�1 cm�1] and r = 0.9991.

Table 5
Complexation of TCNQ with cyclophane amides 1, 2, 3, 4 and 5

Cyclophane amide Ka (mol�1 dm3) e (M�1 cm�1) r

1 3.79 � 104 1.80 � 104 0.9991
2 1.57 � 104 2.03 � 104 0.9996
3 1.11 � 104 2.34 � 104 0.9999
4 6.34 � 103 2.48 � 104 0.9997
5 1.22 � 104 1.68 � 104 0.9981

Table 6
Complexation of Cu (II) acetate with cyclophane amides 1, 2, 3, 4 and 5

Cyclophane amide k max (nm) of the
cyclophane amide

k max (nm) of
Cu(II) complex

1 225.5 697.0
2 261.0 785.5
3 262.0 694.0
4 255.0 710.0
5 258.0 670.5

kmax for Cu(II) acetate is 427.0 nm.
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tailed charge transfer complexation studies of similar cyclophane
amides with other transition metal ions are under investigation.
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